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Linköping University, Sweden



Introduction
Experimental Setup

Results
Conclusions

Overview
Translational Relation Embeddings
Semantic Dependency Parsing
Probing

Outline

1 Introduction

2 Experimental Setup

3 Results

4 Conclusions
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Abstract

In order to assess whether Translational Relation Embedding
models are compatible with the NLP task of Semantic Dependency
Parsing, we present a series of probing experiments.

We show that there seems to be some compatibility, but that
further work is needed to take advantage of it (i.e., such a model is
not explicitly learned by the parser).

We hope that this can be used to improve the compatibility
between components in pipelines for Knowledge Graph generation
and completion.
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Motivation

Translational models provide explicit edge/label embeddings.

Improve the interpretability of the parser’s label decisions.

Improve compatibility of a parser with machine readers and
other NLP/NLU pipelines (harmonize representations)

Riley Capshaw Linköping University 4/21



Introduction
Experimental Setup

Results
Conclusions

Overview
Translational Relation Embeddings
Semantic Dependency Parsing
Probing

Translational Relation Embeddings (TransE)

Given facts as triples of the form
(s, p, o), represent the entities s, o as
vectors h, t ∈ Rn.

Map p to the translation vector r such
that

r ≈ t− h

TransE:

TransE: Bordes, Antoine, et al. “Translating embeddings for modeling multi-relational
data.” Advances in neural information processing systems. 2013.
Image: Wang, Zhen, et al. “Knowledge graph embedding by translating on
hyperplanes.” Twenty-Eighth AAAI conference on artificial intelligence. 2014.
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Semantic Dependency Parsing

The results were in line with analysts ’ expectations .

BV
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ARG1

ARG2

ARG2

poss

Figure: Example SDG #22007003 from the DM dataset.

Encode shallow semantic phenomena between words.

Formulated as a directed acyclic graph.

Example triple: (in, ARG1, results)
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Semantic Dependency Parsing

Semantic Dependency Parsers generally use deep neural networks
in an encoder-decoder model:

Encoder: 3-Layer of BiLSTM units

Decoder: Biaffine classifiers

Figure: Dozat, Timothy, and Christopher D. Manning. “Simpler but more accurate
semantic dependency parsing.” 2018.
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Probing Neural Networks

Use unintrusive simple classifiers to “study” what a neural network
learns:

Linear probes: How easily can features at a given layer linearly
separate the target classes?

Structural probes: How well can the features at a given layer
be structured in a particular way?
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Probing Neural Networks: Structural probes

Given a pre-trained encoder (contextualizer) for a semantic
dependency parser, we want to see how well a translational model
would work as the parser’s decoder without further training the
parser.

That is, we want to see if we can explain the parser’s predictions
based on a linear restructuring of its encoder’s vector space.
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Probing Neural Networks: Structural probes

For a given layer of a neural network:

Take that layer’s output for words i , j as the vectors xi , xj .

Train a translational relation model to predict the predicted
output relation for the samples given only xi and xj as input.

Interpret the accuracy as a measure of the ability of the model
to explain the parser’s predictions.

Note that structural probes tend to probe for a feature external to the dataset, such as
syntactic trees in language models. We are looking for relational structuring in a
parser’s predictions, which is arguably external.
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Probing Neural Networks: Linear probes

To understand how well the structural probes fit the vector space,
we use linear probes as a control to provide a theoretical upper
bound.

For a given layer of a neural network:

Combine that layer’s output for words i and j as the vector x.

Train a simple linear softmax classifier softmax (Wx + b) by
minimizing cross-entropy to predict the predicted1 output
label for words i and j given only their representations.

Interpret the accuracy as a measure of the linear separability
of the layer’s features.

1Most probes predict the true output label, not the predicted one.
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Parser and Data

We used a pre-existing semantic dependency parser2.

We trained the parser on the English DELPH-IN MRS (DM)
portion of the 2014 and 2015 SemEval shared tasks on
broad-coverage semantic dependency parsing.

For every predicted dependency r between pairs of words h
and t, we record the respective m-dimensional representations
h, t ∈ Rm generated by each BiLSTM layer as (h, r , t).

Predictions are made for every sentence in both the training
and testing sets.

2Kurtz, R., Roxbo, D., Kuhlmann, M. “Improving semantic dependency parsing
with syntactic features.” Proceedings of the First NLPL Workshop on Deep Learning
for Natural Language Processing. 2019.
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Probes

Given the predicted training and testing sets, we trained the
following three linear probes:

W[t− h] + b (subtraction/translation)

W[h + t] + b (addition)

W[h; t] + b (concatenation)

And the following two structural probes:

h + rr − t

Mh + rr −Mt
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Structural Probes

For the structural probes, we first define a scoring function:

fr (h, t) =‖h + rr − t‖2
2 , or

fr (h, t) =‖Mh + rr −Mt‖2
2

Where M (if present) and rr are learned parameters.
Then, given a margin γ, we define our learning constraints:

1. fr (h, t) ≤ γ (relaxed translation)

2. fr ′(h, t) > γ for all r ′ 6= r (label separation)

3. ‖t− h‖2
2 > 2γ (enforce directionality)

where ‖·‖2
2 is the squared `2 norm.
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Structural Probes

Combining the constraints and scoring function, we get the
following loss function:

L =
[
fr (h, t)− γ

]
+

+
∑
r ′ 6=r

[
γ − fr ′ (h, t)

]
+

+
[
2γ −‖r‖2

2

]
+
,

where [·]+ is equivalent to max (0, ·).

We also recalculated scores where a prediction is considered correct
only if the margin constraint (fr (h, t) ≤ γ) was satisfied.

Riley Capshaw Linköping University 15/21



Introduction
Experimental Setup

Results
Conclusions

Overview
Linear Probes
Structural Probes

Results: Layer-by-layer

Category ID Probe Layer 0 Layer 1 Layer 2 Layer 3

Linear L1 W[h + t] + b 66.73 81.34 88.85 91.01
L2 W[t− h] + b 67.82 85.18 94.07 95.89
L3 W[h; t] + b 72.69 89.06 96.54 97.52

Structural S1 h + rr − t 38.87 48.44 56.73 60.09
S2 Mh + rr −Mt 60.37 76.88 86.96 90.76

Constrained C1 h + rr − t 0.82 0.89 0.84 0.04
C2 Mh + rr −Mt 35.62 56.37 65.10 73.57

Scores for all experiments in terms of recall as a function of layer.
In general, as the depth increases, the score increases.
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Results: Final Layer

Category ID Probe Layer 3

Linear L1 W[h + t] + b 91.01
L2 W[t− h] + b 95.89
L3 W[h; t] + b 97.52

Structural S1 h + rr − t 60.09
S2 Mh + rr −Mt 90.76

Constrained C1 h + rr − t 0.04
C2 Mh + rr −Mt 73.57

Scores for all probing experiments in terms of recall.
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Results: Linear Probes

Category ID Probe Layer 3

Linear L1 W[h + t] + b 91.01
L2 W[t− h] + b 95.89
L3 W[h; t] + b 97.52

Observations:

Concatenation (preservation of all features) performed best.

Translation somewhat worse, but contains most needed
information.

Addition much worse.
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Results: Structural Probes

Category ID Probe Layer 3

Structural S1 h + rr − t 60.09
S2 Mh + rr −Mt 90.76

Constrained C1 h + rr − t 0.04
C2 Mh + rr −Mt 73.57

Constrained means that a correct prediction is considered incorrect
at prediction time if the constraints are not all satisfied.
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Results: Structural Probes

Category ID Probe Layer 3

Structural S1 h + rr − t 60.09
S2 Mh + rr −Mt 90.76

Constrained C1 h + rr − t 0.04
C2 Mh + rr −Mt 73.57

Observations:

S2 performs roughly on par with the linear probes.

C1 implies that S1 largely fell back to linear classification,
which implies no explicit structuring learned by the parser.

C2 performed decently well. May imply that there is some
latent structure learned by the parser.
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Conclusions and Future Work

The parser does not explicity learn a translational relation
model.

The parser may implicitly learn such a model, or one may be
easily learned from its contextualized word representations.

This implies a compatibility with such a model, which would
yield useful relation embeddings.

Such embeddings could, in future work, be used to enhance
end-to-end neural pipelines, such as knowledge graph
generation systems or machine readers.
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