lnec

Session 3: Conditional Constraints for KG Embeddings

Michael Weyns, Pieter Bonte, Bram Steenwinckel, Filip De Turck, and Femke Ongenae

IDLAB, IMEC RESEARCH GROUP AT GHENT UNIVERSITY AND ANTWERP UNIVERSITY - CONFIDENTIAL

Context

KG completion \rightarrow link prediction True and false facts required \rightarrow negative sampling

SOTA & objectives

- Exploiting schema to improve negative sampling
- Context-free constraints (RDFS domain and range axioms)
- Closed-world constraints

Objectives:

- Conditional constraints (OWL restrictions)
- Open-world constraints

Open World Assumption (OWA)

Incomplete knowledge

Open World Assumption (OWA)

Monotonicity

Open World Assumption (OWA) - limits

Inconsistency - restriction on Fred (Person is born in some Country)

Open World Assumption (OWA) - limits

Inconsistency - restriction on Fred (Person is born in max 1 Country)

Open World Assumption (OWA) - limits

Negative property assertions

e.g. NegativeObjectPropertyAssertion(:born_in :Fred :USA)

Negative sampling - SOTA

$$\begin{aligned} \forall i,k,j,(e_i,r_k,e_j) \in O \implies e_i \notin \mathcal{C}, e_j \notin \mathcal{C} \\ \forall (e_i,r_k,e_j) \in O, (e_i,r_k,e_j) \in O^+ \iff y_{ikj} = 1 \\ \forall (e_i,r_k,e_j) \in O, (e_i,r_k,e_j) \in O^- \implies y_{ikj} = 0 \end{aligned}$$

$$y_{ikj} = \begin{cases} 1, & \text{if } x_{ikj} \text{ exists} \\ 0, & \text{otherwise} \end{cases}$$

Negative sampling - SOTA CWA

<Fred, born_in, USA>
<Fred, born_in, France>
<Fred, born_in, Belgium>
<Fred, born_in, England>
<Lucy, born_in, Scotland>

. . .

Negative sampling - SOTA

Perturbation (+ filtering)

<Fred, born_in, USA>

<Lucy, born_in, USA>
<Fred, born_in, France>

Negative sampling - SOTA

Bernoulli trick

per relationship *r*:

hpt = *avg* # *head entities*/*tail entity tph* = *avg* # *tail entities*/*head entity*

perturb *head* with
$$prob = \frac{tph}{(tph + hpt)}$$

perturb *tail* with $prob = \frac{hpt}{(hpt + tph)}$

RDFS axioms

$$\mathcal{K} = \{1 \dots N_r\}, \mathcal{I} = \{1 \dots N_e\}$$

$$\forall k \in \mathcal{K}, \forall c \in \mathcal{C}, \forall (r_k, \text{rdfs:domain}, c) \in \text{TBox} \implies \\ \forall i, j \in \mathcal{I}, (e_i, r_k, e_j) \implies (e_i, a, c) \\ \forall k \in \mathcal{K}, \forall c \in \mathcal{C}, \forall (r_k, \text{rdfs:range}, c) \in \text{TBox} \implies \\ \forall i, j \in \mathcal{I}, (e_i, r_k, e_j) \implies (e_j, a, c)$$

OWL axioms

$$\mathcal{K} = \{1 \dots N_r\}, \mathcal{I} = \{1 \dots N_e\}$$

$$\forall k \in \mathcal{K}, \forall c, c' \in \mathcal{C}, \forall (b(c, r_k), \text{owl:onProperty}, r_k) \in \text{TBox } \& \\ \forall (b(c, r_k), \text{owl:allValuesFrom}, c') \in \text{TBox} \\ \implies \forall i, j \in \mathcal{I}, (e_i, a, c) \implies (e_i, r_k, e_j) \implies (e_j, a, c') \\ \forall k \in \mathcal{K}, \forall c, c' \in \mathcal{C}, \forall (b(c, r_k), \text{owl:onProperty}, r_k) \in \text{TBox } \& \\ \forall (b(c, r_k), \text{owl:someValuesFrom}, c') \in \text{TBox} \\ \implies \forall i \in \mathcal{I}, \exists j \in \mathcal{I}, (e_i, a, c) \implies (e_i, r_k, e_j) \& (e_j, a, c')$$

Context-free constraints - SOTA

rdfs:domain is an instance of *rdf:Property* that is used to state that any resource that has a given property *must be* an instance of one or more classes. *rdfs:range* is an instance of *rdf:Property* that is used to state that the values of a property *must be* instances of one or more classes.

$$\forall k \in \mathcal{K}, \forall c \in \mathcal{C}, \forall (r_k, \text{rdfs:domain}, c) \in \text{TBox} \implies \\ \forall i, j \in \mathcal{I}, (e_i, a, c) \implies (e_i, r_k, e_j) \text{ is valid} \\ \forall k \in \mathcal{K}, \forall c \in \mathcal{C}, \forall (r_k, \text{rdfs:range}, c) \in \text{TBox} \implies \\ \forall i, j \in \mathcal{I}, (e_j, a, c) \implies (e_i, r_k, e_j) \text{ is valid}$$

Conditional constraints

The *owl:allValuesFrom* restriction requires that for every instance of the class that has instances of the specified property, the values of the property *must all be* members of the class indicated by the *owl:allValuesFrom* clause

The owl:someValuesFrom restriction describes a class of all individuals for which at least one value of the property concerned *must be* an instance of the class description or a data value in the data range

$$\forall k \in \mathcal{K}, \forall c, c' \in \mathcal{C}, \forall (b(c, r_k), \text{owl:onProperty}, r_k) \in \text{TBox } \& \\ \forall (b(c, r_k), \text{owl:allValuesFrom}, c') \in \text{TBox} \\ \implies \forall i, j \in \mathcal{I}, (e_i, a, c) \implies (e_j, a, c') \\ \implies (e_i, r_k, e_j) \text{ is valid} \\ \forall k \in \mathcal{K}, \forall c, c' \in \mathcal{C}, \forall (b(c, r_k), \text{owl:onProperty}, r_k) \in \text{TBox } \& \\ \forall (b(c, r_k), \text{owl:someValuesFrom}, c') \in \text{TBox} \\ \implies \forall i \in \mathcal{I}, \exists j \in \mathcal{I}, (e_i, r_k, e_j) \& (e_j, a, c') \implies (e_i, a, c) \\ \implies (e_i, r_k, e_j) \text{ is valid} \\ \end{cases}$$

Constraint-based negative sampling

- 1. Type inference based on axioms
- 2. Impose restrictive interpretation
- 3. Constraint-based negative sampling

 \equiv

Axiomatic consistency checking during perturbation

Constraints - CWA interpretation (SOTA)

$$\forall i, k, j, (e_i, r_k, e_j) \in O \implies e_i \notin \mathcal{C}, e_j \notin \mathcal{C}$$

$$\forall (e_i, r_k, e_j) \in O, (e_i, r_k, e_j) \in O^+ \iff y_{ikj} = 1$$

$$\forall (e_i, r_k, e_j) \in O, (e_i, r_k, e_j) \in O^- \implies y_{ikj} = 0$$

 (e_i, r_k, e_j) is valid

Constraints - OWA interpretation

$$\forall i, k, j, (e_i, r_k, e_j) \in O \implies e_i \notin \mathcal{C}, e_j \notin \mathcal{C}$$

$$\forall (e_i, r_k, e_j) \in O, (e_i, r_k, e_j) \in O^+ \iff y_{ikj} = 1$$

$$\forall (e_i, r_k, e_j) \in O, (e_i, r_k, e_j) \in O^- \implies y_{ikj} = 0$$

 (e_i, r_k, e_j) is invalid

Evaluation - datasets

TransE embedding technique

AIFB: research staff, research groups, affiliations, publications

train	19916 entities
valid	2213 entities
test	2459 entities
OWL constraints	152

MUTAG: potentially carcinogenic molecules

Universiteit

Antwerpen

train	41999 entities
valid	4667 entities
test	5185 entities
RDFS constraints	5087

Evaluation - results

Setting	neg ratio	MR	MRR	Hits@10	\mathbf{FN}
no constraints	1	667.860	0.230	0.452	222
no constraints	5	653.403	0.340	0.572	647
open world constraints	1	663.658	0.208	0.412	173
open world constraints	5	N/A	N/A	N/A	N/A
closed world constraints	s 1	801.260	0.265	0.486	468
closed world constraints	5 5	870.899	0.250	0.468	985

Table 1: Results for AIFB

Evaluation - results

Setting	neg ratio	MR	MRR	Hits@10	\mathbf{FN}
no constraints	1	3408.810	0.043	0.089	29
no constraints	5	2341.297	0.093	0.181	167
open world constraints	1	3166.192	0.051	0.105	12
open world constraints	5	2170.180	0.100	0.180	82
closed world constraints	1	3232.653	0.043	0.091	30
closed world constraints	5	1975.455	0.110	0.215	153

Table 2: Results for MUTAG

Conclusions

- AIFB (conditional constraints)
 - OWA interpretation
 - No improvements
 - Decrease in false negatives
 - CWA interpretation
 - Few false negatives: clear improvements
 - Many false negatives: fewer improvements
 - Best setting: no constraints, with high neg ratio

- Few conditional constraints:
 - Many false negatives (CWA)
 - High computational complexity (OWA)

Conclusions

- MUTAG (context-free constraints)
 - OWA interpretation
 - Clear improvements
 - Decrease in false negatives
 - CWA interpretation
 - Clear improvements
 - No increase in false negatives
 - Best setting: CWA constraints, with high neg ratio

- Sufficient conditional constraints:
 - Consistent number of false negatives (CWA)
 - Consistent computational complexity (OWA)

Future work

- Context-free ↔ conditional constraints (same dataset comparison)
- Rejection hyperparameter
- Effects on other embedding strategies

Thank you very much for listening. Any questions?

embracing a better life

