Affinity Dependent Negative Sampling for Knowledge Graph Embeddings

M M Alam, H Jabeen, M Ali, K Mohiuddin, and J Lehmann

Smart Data Analytics, University of Bonn CEPLAS, University of Cologne <u>hajira.jabeen@uni-koeln.de</u>

Introduction

Knowledge graph



- A special kind of relational data in terms of subject, predicate and object.
- Knowledge graph encodes available information based on entities and their relations.
- Example- DBpedia, Yago, Freebase, WordNet.

Negative sampling

- To contrast with already available data which is considered true.
- Essential step to help vector based embedding models to learn link prediction tasks.

Image Source: Maximilian Nickel et al. A Review of Relational Machine Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated Knowledge Graph Construction

Knowledge Graph Embedding Models

- Encode the information contained in Knowledge graphs as
 - Vectors
 - Tensors
- Embeddings
 - Multidimensional vector representations for entities or relations
- Capture
 - Semantic similarity of entities
- Optimize
 - Translational objective for similarity scores (TransE : h+r≈t)
 - Optimize bilinear scores (DistMult : (h,t,r))
- Applications
 - KG Completion

Related Work

- Random Negative Sampling [1]
- Corrupting Positive Triple (True Triple) Based on Relations [1]
- Typed Negative Sampling [1]
- Distributional Negative Sampling [2]
- Relational Sampling [1]
- Nearest Neighbor sampling [1]
- Near Miss sampling [1]

Adaptive Distributional Negative Sampling

- Inspired by the Distributional Negative Sampling (DNS)[2]
- Draws out most similar vectors of entities for corruption adaptively
- We select the similar entities for corruption from each batch
- Execution time improvement
- Vector based fitness function that extracts candidate entities

ADNS - Algorithm

INPUT: Training set $S_{\{h, r, t\}}$, Entity Set ξ , Relation set R, batch Size β , Number of Negatives C **OUTPUT:** For Given Batch $\beta_{\{h,r,t\}}$ return negative triples $N_{\{h',r,t'\}}$

```
Function Sample Negative (S_{\{h, r, t\}}, \xi, R, \beta, C):
for triple t \in \beta_{\{h,r,t\}} do
    candidate_position = Bern(t, R)
         ▷ bern negative sampling to decide whether head or tail corruption
    candidate = t_{candidate_position}
    \xi_c = \{\xi\} - candidate
                               \triangleright subtract the candidate from total entity set
     M_{\text{score}} = CosineSimilarity(candidate, \xi_c)
    M_{\rm score} = max(0, M_{\rm score})
    for i \in length(M_{score}) do
         probability_fitness_i = M_{score_i} \div \sum_j M_{score_j}
                                                        \triangleright generate the fitness vector
     selected\_entities = random\_choice(\xi_c, C, probability\_fitness)
     NegativeTriple_{(h',r,t')} =
     FormNegative(t, selected_entities, candidate_position)
                                                 \triangleright form C negative triples/positive
    N_{\{h',r,t'\}} = N_{\{h',r,t'\}} \cup NegativeTriple_{(h',r,t')}
     ▷ append C negative triple per positive to the total batch negative set
return N_{\{h',r,t'\}}
```

Experiment

Hardware and Tools

- Core i7 4770 processor, 16 GB RAM, Nvidia RTX 2060 GPU
- Tools: Pytorch, Pandas, Numpy, Scipy,
- Model TransE [3] and DisMult [4]

Dataset

• Small to medium size data sets

Dataset	# of entity	# of relation	# Training triple	# Test triple	# Validation triple
UMLS	135	46	5216	661	652
Kinship	104	25	8544	1074	1068
Nations	14	55	1592	201	199

Table 1: Statistical information of the datasets.

Experiment

Evaluation Metrics

- Filter settings have been used for the standard knowledge graph embedding evaluation metrics.
 - Mean Rank (MR)
 - Mean Reciprocal Rank (MRR)
 - Hit@1
 - Hit@3
 - Hit@10

Results

Evaluation of Negative Sampling

Dataset	Random Negative	DNS	ADNS
	MR: 5	MR: 5	MR: 4
	MRR: 26.96%	MRR: 33.79%	MRR: 42.42%
Nations	Hit@1: 0%	Hit@1: 13.68%	Hit@1: 20.15%
Tations	Hit@3: 40.05%	Hit@3: 37.31%	Hit@3: 53.98%
	Hit@5: 60.95%	Hit@5: 59.95%	Hit@5: 73.88%
	Hit@10: 93.53%	Hit@10: 94.53%	Hit@10: 98.01%
	MR: 9	MR: 13	MR: 8
	MRR: 25.66%	MRR: 24.89%	MRR: 28.47%
Kinship	Hit@1: 0.009%	Hit@1: 0.03%	Hit@1: 00.28%
Kinship	Hit@3: 39.80%	Hit@3: 38.13%	Hit@3: 47.77%
	Hit@5: 56.28%	Hit@5: 49.30%	Hit@5: 62.38%
	Hit@10: 76.44%	Hit@10: 64.20%	Hit@10: 78.91%
	MR: 3	MR: 3	MR: 2
	MRR: 64.47%	MRR: 72.90%	MRR: 80.21%
UMLS	Hit@1: 39.86%	Hit@1: 56.81%	Hit@1: 64.45%
UNILS	Hit@3: 88.12%	Hit@3: 86.76%	Hit@3: 95.54%
	Hit@5: 93.95%	Hit@5: 92.06%	Hit@5: 97.05%
	Hit@10: 97.13%	Hit@10: 96.44%	Hit@10: 98.03%

Table 2: Evaluation of negative sampling of TransE

Results

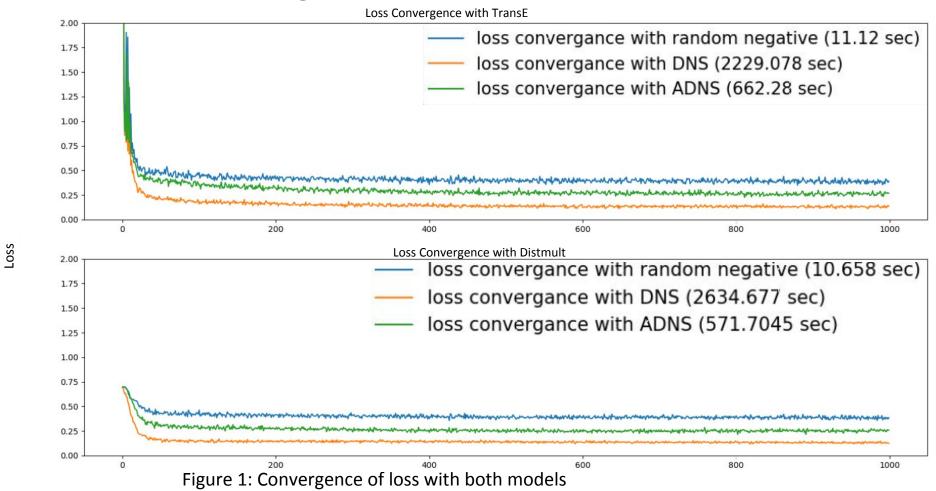
Evaluation of Negative Sampling

Dataset	Random Negative	DNS	ADNS
	MR: 3	MR: 2	MR: 2
	MRR: 65.34%	MRR: 82.32%	MRR: 79.48%
Nations	Hit@1: 49.50%	Hit@1: 73.63%	Hit@1: 68.91%
Ivations	Hit@3: 76.12%	Hit@3: 88.06%	Hit@3: 86.32%
	Hit@5: 88.31%	Hit@5: 94.53%	Hit@5: 93.78%
	Hit@10: 99.520%	Hit@10: 99.75%	Hit@10: 100.00%
	MR: 6	MR: 5	MR: 5
	MRR: 48.45%	MRR: 57.19%	MRR: 58.74%
Kinship	Hit@1: 33.43%	Hit@1: 44.88%	Hit@1: 47.63%
Kinship	Hit@3: 54.24%	Hit@3: 61.78%	Hit@3: 61.87%
	Hit@5: 65.27%	Hit@5: 71.09%	Hit@5: 71.09%
	Hit@10: 85.38%	Hit@10: 83.80%	Hit@10: 85.94%
	MR: 8	MR: 5	MR: 6
	MRR: 48.03%	MRR: 71.15%	MRR: 60.72%
UMLS	Hit@1: 34.72%	Hit@1: 63.69%	Hit@1: 49.24%
UNILS	Hit@3: 54.84%	Hit@3: 74.21%	Hit@3: 67.96%
	Hit@5: 64.07%	Hit@5: 78.97%	Hit@5: 74.96%
	Hit@10: 76.48%	Hit@10: 86.16%	Hit@10: 84.87%

Table 3: Evaluation of negative sampling of DisMult

Results

The figures show the convergence of loss function for UMLS data



Conclusions & Future work

- Proposed an effective and fast negative sampling method for embedding models
- The performance of the proposed approach is comparable with the existing approaches, while being less complex

Future Work

- Test on more recent KG embedding models. Example Rotate [5], Tucker [6] or QuatE [7].
- Test with other similarity methods (Example:TF-IDF)
- Test with larger Data

REFERENCES

[1] Kotnis, B., & Nastase, V. (2017). Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816

[2] Dash, S., & Gliozzo, A. (2019). Distributional Negative Sampling for Knowledge Base Completion. arXiv preprint arXiv:1908.06178.

[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko,O. (2013). Translating embeddings for modeling multi-relational data.In Advances in neural information processing systems (pp. 2787-2795).

[4] Yang, B., Yih, W. T., He, X., Gao, J., & Deng, L. (2014). Learning multi-relational semantics using neural-embedding models. arXiv preprint arXiv:1411.4072.

REFERENCES

[5] Sun, Zhiqing, et al. "Rotate: Knowledge graph embedding by relational rotation in complex space." arXiv preprint arXiv:1902.10197 (2019).

[6] Balažević, Ivana, Carl Allen, and Timothy M. Hospedales. "Tucker: Tensor factorization for knowledge graph completion." arXiv preprint arXiv:1901.09590 (2019).

[7] Zhang, S.; Tay, Y.; Yao, L.; Liu, Q. Quaternion knowledge graph embeddings. In Proceedings of the 33th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada,

THANK YOU

HOME INTRODUCTION RELATED WORK CONTRIBUTION ALGORITHM EXPERIMENT RESULT CONCLUSION & FUTURE WORK REFERENCES THANKS ANY QUESTION

Questions

Knowledge Graph Embedding Models Distmult

- 1. The bilinear scoring function of DistMult model is obtained by multiplying their entity vectors (head and tail) with their corresponding relation matrix which is diagonal [5].
- 2. The entities are considered as ye1, ye2 and their corresponding diagonal relation matrix Mr, leads to the equation 1 [5].

5. Yang, B., Yih, W. T., He, X., Gao, J., & Deng, L. (2014). Learning multi-relational semantics using neural-embedding models. arXiv preprint arXiv:1411.4072.

