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Abstract. Knowledge graph embedding system work in vector space
where entities and relationships profoundly rely on positive and neg-
ative instances. Combination of a subject, a predicate and an object
creates a triple, that make up a positive or negative assertion. Positive
triples can be taken from the knowledge base, but additional steps are
required to understand relations between entities and relations in or-
der to create meaningful negative triples. In this paper we present an
approach to create negative triples using affinities of triples. We create
false triples meaningfully, rather than generating negative sample ran-
domly. We rely on the closeness of the entities to create the false triples.
We have compared our method with distributed negative sampling and
random negative sampling and the results have been found comparable
and efficient.

Keywords: Knowledge graph analysis · Negative sample creation · Em-
bedding models · optimization techniques.

1 Introduction

Knowledge Graphs (KG) are a special kind of data where everything is pre-
sented in terms of subject (head), predicate (relations) and object (tail). Sub-
jects/Objects (head or tail) can be considered as entities/nodes. Predicates (re-
lations) can be considered as an edge/connection between two entities [1]. Most
of the knowledge graphs encode the available information only, which is mostly
the true cases. A lot of vector based embedding learning models require negative
sampling to create data that contrasts with the already available data (discussed
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in details in later sections). In this paper, we aim to develop an informative sys-
tem of developing more prominent negative samples in order to aid the state
of the art knowledge graph embedding models which are vastly used for link
prediction tasks. This paper is divided into several sections. Sections 2 discusses
about several closely related researches. In section 3, the two embedding models
are discussed where we have tested our negative sampling technique. In section
4, we present the methodology and the algorithm. In section 5, we discuss about
the implementation details (used datasets, hyperparameters etc.). In section 6,
we discuss our experiment and results. Finally, section 6 provides an overview
of the future directions.

2 Related Work

The transformation of KGs into the vector space using embedding models have
become a renowned area of research. Lots of embedding learning approaches have
been presented in the literature in the recent years. e.g, TransE [2], DistMult [3],
Complex[4], TransH [5], RotatE [6] etc. Almost all of these models depend on the
existing data encoded in the input KG. Following the closed world assumption
the KG is considered as true, the knowledge not present in the KG cannot be
considered false, but it can only be labelled as unknown. On the other hand,
similar to most of the machine learning algorithms, The embedding models re-
quire negative examples to learn the embeddings efficiently. In order to cope with
this, numerous negative sample generation methods have been proposed in the
literature. In this section we will briefly cover a few related negative sampling
methods. The widely used negative sampling method is randomly perturbs the
head entity (subject) or tail entity (tail) in a triple with other available entities
from the entity set. This approach was used in TransE [2]. This approach as-
sumes that the data not present in the given RDF data can be a negative triple.
Possible problems might be pulling out more relevant entities as replaceable en-
tity for corruption [7]. Another approach includes corrupting positive triples for
every relation [8], in this approach the graphs with less number of relations suffer
from insufficient pool to corrupt positive instances [7]. Typed Sampling is the
negative sampling based on entity and relation type by using their metadata
[7]. Some other approaches discussed in [7] are Relational Sampling, Nearest
Neighbor sampling, Near Miss sampling. Nearest Neighbor sampling and Near
Miss sampling aim to draw out similar entities as a candidate for perturbation
of triple subject or triple predicate. However, all of these approaches require pre-
training of embedding. A negative sampling which pulls out the most prominent
candidate as replaceable entity is Distributional Negative Sampling [9]. This ap-
proach does not require any pre-training in addition to corrupting the positive
instances with more plausible entities. However, our implementation according
to the algorithm given in distributional negative sampling paper [9], has a long
training time that might have the potentiality for improvement of the duration
of training, and computation. We therefore, tried to improve the training time
while achieving a descent model performance.
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3 Embedding Models Used

Model TransE [2] and DistMult [3] have been selected as the default models
to demonstrate our negative sampling technique for their simplicity and less
training effort.

3.1 Distmult

The bilinear scoring function of DistMult model is obtained by multiplying their
entity vectors (head and tail) with their corresponding relation matrix which
is diagonal [3]. The entities are considered as ye1, ye2 and their corresponding
diagonal relation matrix Mr, leads to the equation 1 [3].

grb (ye1, ye2) = yTye1
Mrye2 (1)

To minimize the margin based ranking loss, where, entities are denoted by e1,
e2 and relation is denoted by r. For the corrupted triple and replaceable entities
are e1′ and e2′. The positive formed triple is (e1, r, e2) ∈ T , where T is the total
triple set. Thus corrupted triple is T ′ = {(e1′, r, e2)|e1′ ∈ E, (e1′, r, e2)|e1′ /∈ T}∪
{(e1, r, e2′)|e2′ ∈ E, (e1, r, e2′)|e2′ /∈ T}, where E is the total set of entities. Here,
author also corrupted either head or tail of the given triple to obtain corrupted
ones. Ranking loss was used to minimize the objective function. Equation 2
describes the loss function of [3].

L =
∑

(e1,r,e2)∈T

∑
(e1′,r,e2′)∈T

max{S(e1′,r,e2′) − S(e1,r,e2) + 1, 0} (2)

3.2 TransE

TransE uses similar randomly generated negative sampling techniques in their
paper [2]. Their idea of scoring function is the edges (relations) corresponds to
translation of embedding [2]. Means, in case of true triple, additive head and
relation h + l should be in the nearest vicinity of the tail t. They considered it
as a distance function d, their scoring function is stated in equation 3 as stated
in [2], where γ is the margin.

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S(h,l,t)

[γ + d(h+ l, t)− d(h′ + l, t′)]+ (3)

4 Affinity Dependent Negative Sampling

As mentioned earlier, we improve upon an existing approach presented in [9]
for the development of our negative sampling technique. In the training phase,
for each of the positive triple in the KG, the aim is to generate C negative
samples. In the training phase, Bernoulli sampling [10] is used to decide if the
head (subject) or tail (object) is to be corrupted in a given triple. We use cosine
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similarity between the selected candidate (head or tail to be replaced by other
entities) and all the other entities is calculated. This is stored as the affinity
vector. Further, we made a affinity function based on the affinity vector M (the
cosine similarity between the candidate entity and all the other entity). For each
of the entities i in the entity set ξ, the affinity function is presented equation 4,

Fittnessi =
Mi∑
aMj

(4)

This affinity vector can act as a probability vector for each of the entities
in the entity list. Using the affinity function as the base probability vector, we
can randomly pull out the C replaceable entities based on the affinity. These
C replaceable entities have most likely higher cosine similarity with candidate
entity (which is to be replaced by other entities). Finally we form our negative
triple by replacing the entity by the new chosen replaceable entities. We do this
for all the triples in the batch and finally form the negative sample batch. For
optimization, Adagrad (adaptive gradient descent) [11] optimizer has been used.
We have used self adversarial loss function similar to [6] for both models. For
negative sampling we have used the negative sample creation algorithm (1).

Algorithm 1: Affinity Dependent Negative Sampling

INPUT: Training set S{h, r, t} , Entity Set ξ, Relation set R, batch Size β,
Number of Negatives C
OUTPUT: For Given Batch β{h,r,t} return negative triples N{h’,r,t’}

Function Sample Negative(S{h, r, t}, ξ, R, β, C):
for triple t ∈ β{h,r,t} do

candidate position = Bern(t, R)
. bern negative sampling to decide whether head or tail corruption

candidate = tcandidate position

ξc = {ξ} - candidate . subtract the candidate from total entity set
M score = CosineSimilarity(candidate, ξc)
M score = max(0,M score)
for i ∈ length(M score) do

probability fitnessi = M scorei ÷
∑

j M scorej

. generate the fitness vector

selected entities = random choice(ξc, C, probability fitness)
NegativeTriple(h’,r,t’) =
FormNegative(t, selected entities, candidate position)

. form C negative triples/positive
N{h’,r,t’} =N{h’,r,t’} ∪ NegativeTriple(h’,r,t’)
. append C negative triple per positive to the total batch negative set

return N{h’,r,t’}

In this algorithm, similar to [9] in first few lines the main aim is to, per-
form head or tail corruption based on the bern sampling. Later, we remove the
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candidate from the total entity set and perform cosine similarity between the
candidate entity (which is to be replaced) and all the other entities from entity
set ξ. We denote the cosine similarity vector as M score from which the negative
values from the cosine similarity vectors to 0 in the following line. Later, we
generate probability fitness vector probability fitness by equation 4. Further,
using numpy’s random choice, we achieve the C number selected entities (With
which we intend to corrupt the training instances). In the following lines, we cor-
rupt the positive triple and form C number of corrupted triples finally forming
a batch of corrupted triples against the positive ones. It is a very unusual case
where all of the instances of the cosine similarity vector is negative. In this case
we choose random replaceable entities out of entity set ξ.

5 Implementation details

5.1 Datasets and preprocessing

We have used medium to smaller datasets. Our datasets were in RDF (subject,
predicate and object format). We have generated the dictionaries (entity to id,
relation to id) for identification of specific entities and relations. We have used
nations [12],kinship [13], and UMLS [14] dataset. These datasets are not very big
and able to produce results in very short amount of time. These datasets were
used in [15]. In our experiments the statistics of these datasets are provided in
table 1

Table 1. Statistical information of the datasets

Dataset # of entity # of relation # Training triple # Test triple # Validation triple

UMLS 135 46 5216 661 652

Kinship 104 25 8544 1074 1068

Nations 14 55 1592 201 199

Each of the entities and relations in the training and test set has the same
identifier (the dictionary mentioned in the previous section).

5.2 Hardware and Tools

All of the results were achieved with a hardware of 16 GB ram, i7 4770 processor
and Nvidia RTX 260 GPU. The experiments was built with Pytorch1, numpy2,
scipy3, pandas4.

1 https://pytorch.org/
2 https://numpy.org/
3 https://www.scipy.org/
4 https://pypi.org/project/pandas/
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5.3 Hyperparameters

For TransE the optimal hyper parameters were: learning rate = 0.1, gamma =
14 (for kinship, nations dataset), gamma = 10(for UMLS dataset), adversarial
temperature = 0, negative sample number = 3. Normalization for embeddings
and no regularization were done after each epoch for TransE.

For Distmult everything was same except the gamma which is 10 (for UMLS).
In this case, normalization after each epoch has not been done. Regularization
has been done for avoiding over-fitting.

For both cases self adversarial loss as in [6] and Adagrad optimizer [11] has
been used.

5.4 Evaluation

Our evaluation focused on the model performances using three different negative
samplings (i.e. random negative sampling, distributional negative sampling and
affinity dependant negative sampling) on link prediction task.Filtered settings
has been used as in [6]. Achievement of rankings of test triples against all the
corrupted candidate triples (generation of the candidates are done by corrupting
head or tail) has been done but since we are using the filtered settings candidate
triples does not appear in training, validation or test set.

Standard evaluations for knowledge graph embedding model have been used
in our researches which are mean rank (MR), mean reciprocal rank (MRR),
Hit@1, Hit@3, Hit@5, and Hit@10.

6 Discussion and Result

Comparing with the Random Negative and Distributional Negative sampling
[9], our method performed slightly better in certain cases. Authors in [9] showed
that, the distributive negative sampling improves the performance of the model
by choosing more salient negative samples [9]. The negative sampling method
improves over time as with time the embedding vectors tends to get better. More
appropriate negative sample is created as the steps go further. In case of distri-
butional negative sampling it took a while for us for the training to be finished
since at each iteration it calculates the cosine similarity. Later, it gets each entity
(with which the correct ones to be replaced) by enumeration of the cosine simi-
larity vector, which then acts acceptance and rejection probabilities for each of
them. In this very case, full cosine similarity vector needs to be enumerated for
getting C number of negative triples (or at least C times, but it may be possible
that we might find more plausible negative sample if we traverse more than C).
To mitigate this, we have calculated the fitness vector out of the cosine simi-
larity vector and assigned it as a probability for choosing the plausible entities.
By using the numpy standard library’s choice function5, it has been possible
to avoid enumerating the whole cosine similarity vector and draw C number of

5 https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.choice.html
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replaceable entities at once (which takes fairly less amount of time). This func-
tion Generates C number of random sample from a given one dimensional array.
If probability vector has been provided for the one dimensional array, then the
probability vector becomes the basis of generation of C number of random sam-
ples. We have used the fitness vector as the probability argument for choosing
C entities out of total entity set at once. The results for TransE and Distmult
are stated in table 2 and 3 accordingly.

Table 2. Evaluation of Negative Sampling on TransE

Dataset Random Negative DNS ADNS

Nations

MR: 5
MRR: 26.96%
Hit@1: 0%
Hit@3: 40.05%
Hit@5: 60.95%
Hit@10: 93.53%

MR: 5
MRR: 33.79%
Hit@1: 13.68%
Hit@3: 37.31%
Hit@5: 59.95%
Hit@10: 94.53%

MR: 4
MRR: 42.42%
Hit@1: 20.15%
Hit@3: 53.98%
Hit@5: 73.88%
Hit@10: 98.01%

Kinship

MR: 9
MRR: 25.66%
Hit@1: 0.009%
Hit@3: 39.80%
Hit@5: 56.28%
Hit@10: 76.44%

MR: 13
MRR: 24.89%
Hit@1: 0.03%
Hit@3: 38.13%
Hit@5: 49.30%
Hit@10: 64.20%

MR: 8
MRR: 28.47%
Hit@1: 00.28%
Hit@3: 47.77%
Hit@5: 62.38%
Hit@10: 78.91%

UMLS

MR: 3
MRR: 64.47%
Hit@1: 39.86%
Hit@3: 88.12%
Hit@5: 93.95%
Hit@10: 97.13%

MR: 3
MRR: 72.90%
Hit@1: 56.81%
Hit@3: 86.76%
Hit@5: 92.06%
Hit@10: 96.44%

MR: 2
MRR: 80.21%
Hit@1: 64.45%
Hit@3: 95.54%
Hit@5: 97.05%
Hit@10: 98.03%

From the results, it can be seen that our model has slightly improved perfor-
mance in terms of both models in most of the cases. The overall MR, MRR and
Hit has a significant improvement for ADNS for Nations dataset in table 2. For
Kinship and UMLS, ADNS has slight improvement in terms of MR, MRR and
Hit@10. For Kinship and nations in table 2, some other Hits has significant im-
provement. In table 3, for Nations dataset, only Hit@10 has slight improvement.
In this table no other significant improvement in model performance has been
detected but the training time has been reduced significantly. The training time
of our model is more than the random negative sampling but less than the dis-
tributional negative sampling in terms of our implementation with the original
paper. Figure 1 is indicating the convergence of loss and taken time for UMLS
dataset during 1000 steps which also indicates the training time with each of the
negative sample discussed in legend.
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Table 3. Evaluation of Negative Sampling on DistMult

Dataset Random Negative DNS ADNS

Nations

MR: 3
MRR: 65.34%
Hit@1: 49.50%
Hit@3: 76.12%
Hit@5: 88.31%
Hit@10: 99.520%

MR: 2
MRR: 82.32%
Hit@1: 73.63%
Hit@3: 88.06%
Hit@5: 94.53%
Hit@10: 99.75%

MR: 2
MRR: 79.48%
Hit@1: 68.91%
Hit@3: 86.32%
Hit@5: 93.78%
Hit@10: 100.00%

Kinship

MR: 6
MRR: 48.45%
Hit@1: 33.43%
Hit@3: 54.24%
Hit@5: 65.27%
Hit@10: 85.38%

MR: 5
MRR: 57.19%
Hit@1: 44.88%
Hit@3: 61.78%
Hit@5: 71.09%
Hit@10: 83.80%

MR: 5
MRR: 58.74%
Hit@1: 47.63%
Hit@3: 61.87%
Hit@5: 71.09%
Hit@10: 85.94%

UMLS

MR: 8
MRR: 48.03%
Hit@1: 34.72%
Hit@3: 54.84%
Hit@5: 64.07%
Hit@10: 76.48%

MR: 5
MRR: 71.15%
Hit@1: 63.69%
Hit@3: 74.21%
Hit@5: 78.97%
Hit@10: 86.16%

MR: 6
MRR: 60.72%
Hit@1: 49.24%
Hit@3: 67.96%
Hit@5: 74.96%
Hit@10: 84.87%

Fig. 1. Convergence of Loss with both models
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7 Conclusion and Future work

Learning relational data plays a vital role in various aspects such as drug tar-
get interactions, social network analysis, recommender systems, decease analysis
wherever, entities (i.e. movies, people, locations) and relations (i.e. friend of,
located in, causes) are connected by edges. Learning these relational data needs
negative samples to contrast with its instances. Apart from creating random
negatives, other approaches can be time consuming since it would add an ad-
ditional effort to fetch desired negative samples. In this research, we provided
a glimpse how better negative sample can be generated without sacrificing too
much time with a decent performance.In our experiment, one model i.e. TransE
has good model performance in these data sets whereas DistMult did not pro-
vided significant improvement in terms of model performance but it reduced
the training time. As it was discussed earlier in section 6., Though both model
showed improved or similar or slightly less model performances. In each cases,
both of the models had improved training time over DNS (in our implementation
of both models). In future we aim to use other similarity measures apart from
cosine similarity. We also want to expand our experiment with larger datasets
like Freebase 15k and Wordnet 18 and also include more recent KG models like
rotate, complex etc.
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