
GraphPOPE: Retaining Structural Graph Information
Using Position-aware Node Embeddings
Jeroen B. den Boef1,2, Joran Cornelisse2 and Paul Groth1

1University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2Socialdatabase, Slego 1A, 1046 BM Amsterdam, The Netherlands

Abstract
Exponential computational cost arises when graph convolutions are performed on large graphs such as
knowledge graphs. This computational bottleneck, dubbed the ‘neighbor explosion’ problem, has been
overcome through application of graph sampling strategies. Graph Convolutional Network architectures
that employ such a strategy, e.g. GraphSAGE, GraphSAINT, circumvent this bottleneck by sampling sub-
graphs. This approach improves scalability and speed at the cost of information loss of the overall graph
topology. To improve topological information retention and utilization in graph sampling frameworks,
we introduce Graph Position-aware Preprocessed Embeddings (GraphPOPE), a novel, feature-enhancing
preprocessing technique. GraphPOPE samples influential anchor nodes in the graph based on centrality
measures and subsequently generates normalized geodesic, Cosine or Euclidean distance embeddings for
all nodes with respect to these anchor nodes. Structural graph information is retained during sampling
as the position-aware node embeddings act as a skeleton for the graph. Our algorithm outperforms
GraphSAGE on a Flickr benchmark dataset. Moreover, we demonstrate the added value of topological
information to Graph Neural Networks.

Keywords
Graph Convolutional Networks, Graph Neural Networks, Graph Topology, Feature Embeddings

1. Introduction

Data that emphasizes relationships between data points, e.g. social networks, general knowledge,
protein interactions, can be formally represented as graphs. Within machine learning there
has been much interest in leveraging these graphs representations leading to the inception
of graph learning and Graph Neural Networks (GNN) [1]. Graph neural networks have been
successfully applied to a wide variety of tasks utilizing graph-structured data ranging from
knowledge graphs to social networks [2, 3, 1, 4].

Many of the initial teething problems of GNNs have been resolved [5, 6, 7, 8, 9, 10]. Graph
Convolutional Networks (GCN) combined a convolutional smoothing kernel with a spectral
graph representation to achieve state of the art results on transductive node classification tasks
[5]. While accurate in a transductive setting, this approach to node classification tasks fails to
generalize well to unseen nodes [6]. GraphSAGE opened up the avenue for inductive graph

ISWC2021: Workshop on Deep Learning for Knowledge Graphs (DL4KG), October 25, 2021
Envelope-Open jeroen@socialdatabase.com (J. B. d. Boef); joran@socialdatabase.com (J. Cornelisse); p.t.groth@uva.nl (P. Groth)
GLOBE https://pgroth.com/ (P. Groth)
Orcid 0000-0001-5649-2778 (J. B. d. Boef); 0000-0003-0183-6910 (P. Groth)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jeroen@socialdatabase.com
mailto:joran@socialdatabase.com
mailto:p.t.groth@uva.nl
https://pgroth.com/
https://orcid.org/0000-0001-5649-2778
https://orcid.org/0000-0003-0183-6910
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


convolution models by learning general embedding generation functions for node features [6].
The GraphSAGE propagation rule utilizing a mean aggregator function is nearly equivalent
to the one utilized in transductive GCNs and can be viewed as a linear approximation of
localized spectral convolution. Additionally, primitive skip connections are performed by
concatenating previous neighborhood representations of nodes with the current neighborhood
representation. GraphSAGE also introduced a complementary NeighborSampler dataloader
which improved scalability by introducingmini-batch training toGraphConvolutional Networks.
The NeighborSampler aids embedding computation by sampling neighboring nodes iteratively
and constructing mini-batches of nodes. Bipartite graphs are subsequently constructed to
simulate the computation flow of GNNs. While inductive by nature and competitively accurate
when introduced, the GraphSAGE model is constrained by its set neighborhood sampling
function, as this restricts the convolutional kernel to a fixed size. The introduction of Graph
Attention Networks (GAT) resolved this constraint by using an attention mechanism as a
dynamic smoothing kernel [7]. When combined with a self-attention mechanism, this approach
to graph convolution produces competitive results on both inductive and transductive tasks
[7, 11].

1.1. Present work

Graph sampling architectures improve scalability and speed for Graph Convolutional Networks
on large graphs at the cost of information loss with respect to overall graph topology. In an effort
to improve topological information retention and utilization in graph sampling frameworks, we
propose a general preprocessing technique for Neural Networks operating on graph-structured
data, called GraphPOPE (Graph POsition-aware Preprocessed Embeddings). In this framework,
topological information is embedded into the feature matrix through the generation of relative
distance embeddings. By sampling anchor nodes from a given graph, identification points are
determined. Normalized relative distance embeddings are then generated for all pairings of
nodes and anchor nodes. These embeddings serve as a skeleton of the graph and identify
which neighborhood a node belongs to. Intuitively, GraphPOPE embeddings can be interpreted
as node2vec neighborhood embeddings for the whole graph, whereas node2vec generates
second-order random walks neighborhood embeddings for individual nodes [12]. This makes
GraphPOPE applicable to Multi Layer Perceptrons and local pooling models such as Graph
Convolutional Networks alike, as topological information beyond the scope of a convolutional
kernel is provided.

2. Related Literature

Conceptually, GraphPOPE is closely related to recent advances in GNNs that seek to improve
topological information usage through position-aware convolutional layers. We consider
GraphPOPE closely intertwined with graph sampling techniques as it mitigates topological
information loss.

0Code implementations are publicly available on Github: https://github.com/JeroendenBoef/GraphPOPE

https://github.com/JeroendenBoef/GraphPOPE


2.1. Graph Sampling Approaches

to GNNs favor scalability and speed over embedding or self-attention strategies by sampling
subgraphs for training. Notable instances of this approach are Cluster-GCN and GraphSAINT,
which both address the main computational bottleneck of GCNs [8, 9]. This computational
bottleneck has been dubbed the neighbor explosion problem and is twofold: First, outputs of a
GCN for a single node require data from neighbouring nodes in the previous layer of the network
[8, 9]. Every layer within a GCN requires another 𝑛-hop neighbors where 𝑛 depends on the
convolutional kernel size, increasing computational cost exponentially for every layer. Second,
back-propagation of a GCN requires all of the embeddings in the computation graph to be stored
in GPU memory. Cluster-GCN proposes a solution to this bottleneck by preceding training
with a clustering phase. Clusters of nodes belonging to dense subgraphs are identified during
this clustering phase. These subgraphs are then used to restrict neighborhood search, acting as
boundaries for the convolutional kernel. This relatively simple strategy introduces scalability to
graph convolutional networks while reducing computational costs by a large margin. However,
the employed clustering algorithm introduces additional heavy computational costs.

GraphSAINT adopts a similar approach to Cluster-GCN, marginally improving accuracy but
substantially decreasing computation time [9]. The improved computational speed is mainly
achieved through employment of inexpensive sampling algorithms, contrasting the expensive
clustering algorithm utilized by Cluster-GCN.

2.2. Information Loss:

While sampling graphs during training mitigates the neighbor explosion problem and reintro-
duces scalability to GCNs, it nevertheless results in the loss of information. Restricting the
GCN to specific clusters or completely disconnected subgraphs during training withholds or
even removes edges and thus information from the graph. Chiang and colleagues identify this
shortcoming for Cluster-GCN and introduce stochastic multiple clustering in an effort to reduce
clustering bias and restore lost information simultaneously [8]. However, stochastic multiple
clustering exclusively addresses the issue of cut edges during stochastic gradient descent batch
updates, disregarding information loss preceding this phase.

A residual weakness within GNNs is their inability to distinguish between node positions
with regards to the broader context of graph structure [13]. Not taking node features into
account, two nodes can reside within opposite sides of a graph while having a topologically
identical neighbourhood structure. Attempted heuristics range from attempts at deeper GNNs
to node feature augmentation using position-aware convolutional layers [10].

3. Method: GraphPOPE

The inclusion of position-aware node embeddings as a general preprocessing technique for
graph-based Neural Networks is motivated by the perceived topological information loss in
graph sampling GCNs. Embedding this information into the node features before subgraph
sampling could improve model performance. We first describe the geodesic GraphPOPE algo-
rithm, which samples anchor nodes stochastically and subsequently generates position-aware



Figure 1: Schematic overview of the GraphPOPE embedding generation

node embeddings for all nodes in a given graph (Section 3.1). Embedding enhancement through
biased anchor node sampling and algorithmic time complexity are detailed in Section 3.2. Finally,
we introduce a faster, embedding space approximation of the geodesic GraphPOPE in Section
3.3. A schematic overview of the GraphPOPE algorithm is depicted in figure 1.

3.1. Geodesic Distance Embeddings

This section details the GraphPOPE anchor node sampler and geodesic distance embedding
generator algorithm (Algorithm 1 - GraphPOPE-geodesic), which assumes the output matrix
is concatenated with the feature matrix so that all nodes are enriched with their respective
distance embeddings. Let 𝒢(𝒱 ,ℰ) denote graph 𝒢 with nodes 𝒱 and edges ℰ, 𝑛 the amount
of anchor nodes 𝒱𝑠 to sample, 𝑑 the geodesic distance function used to derive relative node
distances and 𝐷𝑁×𝑛 the geodesic distance matrix generated by GraphPOPE. The intuition behind
this algorithm is that for each node 𝑣𝑖 in the graph, normalized geodesic distances between this
node and all sampled anchor nodes 𝒱𝑠 are computed and added to feature vector v𝑣, which
is subsequently added to the relative distance matrix 𝐷 at index 𝑖. Anchor nodes are sampled
stochastically to reduce algorithm complexity and prevent bias in the data. The distance function
employed for this computation is either a single-source or all-pairs shortest path algorithm,
returning 0 if the target node is unreachable and 1

𝑑(𝑣𝑖,𝑢𝑗)
otherwise. As this distance function

serves as an approximation of how many hops a node is from an anchor node, it can be replaced
by similar but faster distance functions.

3.2. Biased Anchor Node Sampling

The vanilla GraphPOPE (Algorithm 1) avoids bias through stochastic sampling of anchor nodes.
This approach to sampling has a potential drawback of sampling less influential nodes. We
introduce biased anchor node sampling based on node centrality which replaces the stochastic
sampler in Algorithm 1 and alleviates this aforementioned phenomenon.

In this algorithm (see Appendix A, Algorithm 2: Biased Sampler), centrality scores are derived
for all nodes and the highest ranking nodes are selected as anchor nodes. This extension upon
the vanilla GraphPOPE algorithm aims to increase and stabilize the amount of topological

1𝑗 is utilized as an enumeration of 𝑢 ∈ 𝒱𝑠 in line 3 to insert 𝑑𝑖𝑗 into vector 𝑣𝑣 at index 𝑗



Algorithm 1 GraphPOPE-geodesic
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Distance function 𝑑
Output: Geodesic distance matrix 𝐷𝑁×𝑛

1: Stochastically sample 𝑛 anchor nodes 𝒱𝑠 from 𝒱
2: for 𝑣𝑖 ∈ 𝒱 do
3: for 𝑢𝑗 ∈ 𝒱𝑠 do
4: 𝑑𝑖𝑗 ←

1
𝑑(𝑣𝑖,𝑢𝑗)

5: Embedding vector v𝑣[𝑗] ← 𝑑𝑖𝑗 1
6: end for
7: 𝐷[𝑖] ← v𝑣
8: end for

information encoded in the distance embeddings by selecting nodes with higher centrality
scores.

The geodesic distance matrix generation of Algorithm 1 employs a single-source shortest
path algorithm for distance function 𝑑 with time complexity 𝑂(𝑉 + 𝐸) [14]. With this function
being utilized for every combination of sampled anchor node 𝑉𝑠 with every node 𝑣𝑖 ∈ 𝑉, this
results in an overall complexity of 𝑂(𝑉 (𝑉𝑠(𝑉 + 𝐸))). This can be simplified to a notation of
𝑂(𝑉𝑠(𝑉 2 + 𝑉𝐸)), which is close to a worst-case complexity of 𝑂(𝑉 4) for a densely connected,
directional graph (𝐸 = 𝑉 2) with 𝑉𝑠 = 𝑉. This is nevertheless an extreme scenario, divergent
from most average cases. When treated as an all-pairs shortest path problem on a directed
graph and computed in parallel, this complexity can be improved to 𝑂(𝑉 (𝑉 + 𝐸)). An example
of such an approach is the Floyd-Warshall algorithm, which generates a complete mapping of
all shortest paths in a given graph. While this all-pairs approach to the shortest path derivation
reduces the complexity from approximately 𝑂(𝑉 3) to 𝑂(𝑉 2), it is substantially more costly with
regards to memory usage.

Biased anchor node sampling through node centrality introduces additional time complexity.
Betweenness centrality would likely identify well connected, influential nodes most accurately
as it denotes the fraction of shortest paths that pass through a given node. Nodes with a high
betweenness centrality score would logically be more connected than those with a lower score,
and thus less likely to return 0 when fed into distance function 𝑑. As this centrality measure
requires shortest path computation, biased sampling has similar scalability issues to the shortest
path algorithms employed in Algorithm 1. As faster approximations for betweenness centrality,
other measures such as eigenvector-, clustering coefficient-, degree-, farness- and closeness
centrality are utilized for centrality function 𝑐 [15].

3.3. Embedding Space Approximation

In order to resolve the exponential scaling complexity of GraphPOPE-geodesic, we propose
an embedding space alternative. This algorithm (see Appendix A, Algorithm 3: GraphPOPE-
node2vec) utilizes Node2vec to generate local neighborhood embeddings𝒱𝐸 for every node 𝑣𝑖 in
𝒱 [12]. Anchor nodes can then be sampled stochastically or with a bias by K-means clustering
𝒱𝐸 into 𝑛 clusters and utilizing the cluster centroids as pseudo anchor nodes 𝒱𝐸𝑠. Classical



K-means has a time complexity of 𝑂(𝑛2) which can be reduced to 𝑂(𝑛) through cluster shifting
[16]. Moreover, the necessity of biased sampling is reduced for this algorithm, as edge traversal
is not utilized in the distance computation. As a result, information loss does not occur in
a similar fashion to the geodesic distance calculation. Distance between 𝒱𝐸 and 𝒱𝐸𝑠 is then
calculated through parallelized matrix multiplications, which has a linear complexity of 𝑂(𝑛).
Algorithms used for the distance function are Cosine similarity, Cosine distance and Euclidean
distance.

4. Experiments

We evaluate position-aware node embeddings by performing node property predictions on two
benchmark datasets: Flickr and PubMed [9, 17]. In all experiments, predictions are performed on
nodes that are unseen during training but included in the preliminary GraphPOPE embedding
generation. This is thus considered a supervised, transductive learning setting. We usedWeights
& Biases for experiment tracking and hyperparameter optimization [18]. Sections 4.1 and 4.2
detail the experimental setup and data, respectively.

4.1. Experimental Setup

Experiments were conducted with an Ubuntu OS, GTX 2060 and RTX 3060 NVIDIA GPUs
and Intel i7-5820K and Intel gold 6130 CPUs. Geodesic distances are derived with Networkx
and all models are implemented through a combination of Pytorch, Pytorch Geometric and
an abstraction layer of Pytorch Lightning [19, 20, 21, 22]. Our baseline model is a vanilla
GraphSAGE architecture, consisting of 2-3 SAGE convolutional layers with intermediate batch
normalization layers, the GraphSAGE mini-batch NeighborSampler, a hidden dimension size
of 256, a dropout rate of 0.5 and a cross-entropy loss function [23, 6, 21]. GraphPOPE models
used for experimentation are divided into two categories, geodesic and node2vec approaches.
Geodesic iterations consist of the vanilla GraphPOPE-stochastic version and its biased alter-
natives. Specifically betweenness-, closeness-, degree-, clustering coefficient-, eigenvector
centrality and PageRank-based versions. Node2vec implementations are normalized Cosine and
Euclidean distances supported by biased anchor node sampling through K-means clustering.
All experiments were conducted utilizing identical architecture and hyperparameters with the
exception of optimized batch sizes, amount of convolutional layers (2 or 3) and GraphPOPE
settings.

Hyperparameter optimization was conducted separately per dataset for
GraphPOPE-geodesic, GraphPOPE-node2vec and the vanilla GraphSAGE baseline to ensure
unbiased comparison. These optimizations are implemented through hyperparameter sweeps
with a Bayesian search method to optimize validation accuracy [18]. Sweeps are performed
over 𝑛 anchor nodes, batch size 𝐵 and the amount of convolutional layers ℓ.

Experiments are run for a max of 300 epochs using early stopping mechanics and a learning
rate monitor. A starting learning rate of 0.001 is employed which is reduced upon stagnation of
validation loss. Finally, an Adam optimizer is used for all models and early stopping is provoked
if validation accuracy does not increase for 20 epochs [24, 25].



Themotivation behind this experimental setup is twofold. It allows us to assess whether graph
sampling GCNs can be improved through introduction of additional topological information.
Moreover, it reduces the possibility of experimental bias as the convolutional kernel introduces
unfavourable conditions. Convolutional kernels already have access to topological information
of local node neighborhoods, rendering the information gain of GraphPOPE less potent.

4.2. Data

Two graph datasets of contrasting size and density are employed. Test partition nodes are unseen
during training with a separate dataloader that is exclusively instantiated upon conclusion of
training.
Flickr dataset We use the Flickr dataset introduced with GraphSAINT [9]. In the dataset,

edges denote shared metadata among images such as locations or users. Labels are manually
merged tags and represent 7 entities such as animals, nature, humans, etc. Features are 500-
D bag of words extractions of SIFT image descriptions. The graph contains roughly 89,250
nodes with 899,756 edges connecting them. Similar to Zeng and colleagues, edge weights are
normalized in-degrees and a fixed-partition split is applied to the data, resulting in 50/25/25
train/val/test split [9].
Citation dataset The PubMed medical citation graph is used to assess performance on a

smaller, less challenging node property prediction dataset [17]. In this directed graph, nodes
represent scientific publications regarding diabetes research from the PubMed database, edges
indicate outgoing citations and labels represent publication categories. The dataset consists of
19,717 nodes divided over 3 classes with 44,338 edges. We employ the FastGCN partition split,
resulting in 500 validation and 1000 test nodes, leaving the remaining 18,217 nodes for training
[26].

5. Results

We provide experimental results detailing accuracy metrics on the tasks, feature importance of
𝑛 anchor nodes and hyperparameter sweeps. Reported accuracy scores are averages of 20 runs
in a range of fixed global seeds to ensure reproducibility. Tables 1 detail the results. Accuracy
scores are accompanied by their respective standard error and highest accuracy values are
denoted in bold. on benchmarking tasks. Optimized hyperparameters are given in Appendix A,
Table 2.

Table 1 shows an accuracy increment for all geodesic GraphPOPE models with respect
to the baseline on the Flickr dataset. Moreover, GraphPOPE-geodesic implementations that
employ biased sampling of anchor nodes generally experience more substantial accuracy gains.
Contrastingly, node2vec-based approximations yield no improved performance. Results on
PubMed indicate a homogeneous performance of 89% accuracy.

Results on Flickr indicate that configurations with more anchor nodes generally experience a
more substantial increase in performance except for node2vec approximations. Increasing the
amount of anchor nodes from 32 to 256 for an unoptimized, geodesic GraphPOPE with closeness
centrality sampling raises accuracy from 51.98% to 53.05%. Moreover, validation accuracy yields
an 88% positive correlation with the amount of anchor nodes over 90 hyperparameter sweeps



on the aforementioned configuration. PubMed experiments display a contrasting trend where
the amount of anchor nodes provide diminishing returns. On this smaller dataset, the amount
of anchor nodes have a linear correlation of -25%, resulting in an optimal configuration with 64
anchor nodes to maximize validation accuracy.

Table 1
Averaged prediction results over 20 runs on optimized hyperparameters. Biased K-means anchor node
sampling is utilized for N2V implementations.

Flickr PubMed

Name Acc Acc

Betweenness centrality 52.93 ± 0.23 89.14 ± 0.67
Closeness centrality 52.55 ± 0.24 89.28 ± 0.65
Degree centrality 52.92 ± 0.23 89.32 ± 0.63
Clustering coefficient 52.63 ± 0.23 89.40 ± 0.59
Eigenvector centrality 52.48 ± 0.17 89.29 ± 0.60
PageRank 52.94 ± 0.25 89.05 ± 0.55
Stochastic 52.75 ± 0.24 89.55 ± 0.56
N2V-cdist 51.70 ± 0.29 89.52 ± 0.39
N2V-Euclidean 51.68 ± 0.30 89.52 ± 0.39
Baseline 51.78 ± 0.17 89.51 ± 0.35

6. Discussion

Our experimental results on the Flickr dataset display trends of accuracy gain for GraphPOPE-
enhanced architectures with a more substantial improvement on larger datasets. Additionally,
accuracy gains improve upon biased anchor node sampling. The amount of anchor nodes corre-
lates positively with an increase in validation accuracy. This suggests that additional topological
information can be beneficial to sampling-assisted Graph Convolutional Networks. Specifically
for larger graphs, where the fraction of topological information beyond the convolutional kernel
is higher.

GraphPOPE-node2vec poses an ineffective embedding-space alternative. Whereas compu-
tation complexity is improved, model accuracy is not. This phenomenon might be explained
by the fact that convolutional kernels employed by GCNs already have access to the local
neighborhood information encoded by node2vec.

Scalability is a recurring bottleneck for GNNs. Our time complexity stems from the algorithm’s
geodesic distance calculation. Overcoming these scalability issues could prove beneficial for
graph learning on large datasets, given the substantial accuracy increments on such graphs.
Embedding-space approximations of the distance calculation could provide a solution for
the memory and computation time bottlenecks, removing the need for costly edge traversal
operations. Alternatively, models could be trained to approximate the distance function. Finally,
deep learning alternatives for the identification of influential nodes in the graph could accelerate
performance of biased anchor node sampling, potentially improving another time complexity
component.



7. Conclusion

We introduced GraphPOPE, a novel prepossessing technique designed to improve topological
information retention and utilization in Graph Neural Networks. Our algorithm is applicable to
any Neural Network that has access to graph-structured data and operates through position-
aware node embedding generation. We demonstrate an accuracy gain on graph benchmarking
datasets Flickr and PubMed with the application of our position-aware node embeddings, which
can be improved additionally at the cost of additional time complexity. Our experimental results
indicate that larger graphs benefit more from increased amounts of topological information
retention. Finally, we propose approximations for future research to reduce time complexity,
thus increasing applicability to real-world scenarios.

References

[1] W. L. Hamilton, Graph representation learning, Synthesis Lectures on Artifical Intelligence
and Machine Learning 14 (2020) 1–159.

[2] W. Fan, Y. He, Y. Ma, E. Zhao, D. Yin, Q. Li, J. Tang, Graph neural networks for social
recommendation, arXiv (2019) 417–426.

[3] S. Arora, A survey on graph neural networks for knowledge graph completion (2020).
arXiv:2007.12374 .

[4] T. Thanapalasingam, L. van Berkel, P. Bloem, P. Groth, Relational graph convolutional
networks: A closer look, CoRR abs/2107.10015 (2021). arXiv:2107.10015 .

[5] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 (2016).

[6] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs,
Advances in Neural Information Processing Systems 2017-Decem (2017) 1025–1035.
arXiv:1706.02216 .

[7] P. Velicković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention
networks, arXiv (2017) 1–12. arXiv:1710.10903 .

[8] W. L. Chiang, Y. Li, X. Liu, S. Bengio, S. Si, C. J. Hsieh, Cluster-GCN: An efficient algorithm
for training deep and large graph convolutional networks, Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
257–266. doi:10.1145/3292500.3330925 . arXiv:1905.07953 .

[9] H. Zeng, H. Zhou, A. Srivastava, V. Prasanna, R. Kannan, GraphSAINT: Graph sampling
based inductive learning method, arXiv (2019). arXiv:1907.04931 .

[10] J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, 36th International Con-
ference on Machine Learning, ICML 2019 2019-June (2019) 12372–12381. arXiv:1906.04817 .

[11] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec, Open graph
benchmark: Datasets for machine learning on graphs, arXiv preprint arXiv:2005.00687
(2020).

[12] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining, 2016, pp. 855–864.

http://arxiv.org/abs/2007.12374
http://arxiv.org/abs/2107.10015
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1710.10903
http://dx.doi.org/10.1145/3292500.3330925
http://arxiv.org/abs/1905.07953
http://arxiv.org/abs/1907.04931
http://arxiv.org/abs/1906.04817


[13] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, arXiv
preprint arXiv:1810.00826 (2018).

[14] A. Bhargava, Grokking Algorithms: An illustrated guide for programmers and other
curious people, Simon and Schuster, 2016.

[15] X. He, N. Meghanathan, Alternatives to betweenness centrality: A measure of correlation
coefficient, 2016. doi:10.5121/csit.2016.61301 .

[16] M. Pakhira, A linear time-complexity k-means algorithm using cluster shifting, 2014.
doi:10.1109/CICN.2014.220 .

[17] Z. Yang, W. W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph
embeddings, 2016. arXiv:1603.08861 .

[18] L. Biewald, Experiment tracking with weights and biases, 2020. URL: https://www.wandb.
com/, software available from wandb.com.

[19] A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dynamics, and function
using NetworkX, Technical Report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library (2019) 8024–8035. URL: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[21] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch geometric, arXiv
preprint arXiv:1903.02428 (2019).

[22] W. Falcon, et al., Pytorch lightning, GitHub. Note: https://github.com/PyTorchLight-
ning/pytorch-lightning 3 (2019).

[23] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, CoRR abs/1502.03167 (2015). URL: http://arxiv.org/abs/1502.03167.
arXiv:1502.03167 .

[24] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

[25] I. Loshchilov, F. Hutter, Fixing weight decay regularization in adam, CoRR abs/1711.05101
(2017). URL: http://arxiv.org/abs/1711.05101. arXiv:1711.05101 .

[26] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with graph convolutional networks via
importance sampling, CoRR abs/1801.10247 (2018). URL: http://arxiv.org/abs/1801.10247.
arXiv:1801.10247 .

A. Appendix

http://dx.doi.org/10.5121/csit.2016.61301
http://dx.doi.org/10.1109/CICN.2014.220
http://arxiv.org/abs/1603.08861
https://www.wandb.com/
https://www.wandb.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1801.10247


Algorithm 2 Biased sampler
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Centrality function 𝑐
Output: Anchor nodes 𝒱𝑠

𝐶 ← 𝑐(𝒢 )
2: Sample 𝑛 highest 𝐶𝑖 anchor nodes 𝒱𝑠 from 𝒱

Algorithm 3 GraphPOPE-node2vec
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Distance function 𝑑; Node2vec algorithm 𝑧; K-

means clustering algorithm 𝑘; Bias setting 𝑏 ∈ {𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}
Output: Normalized embedding distance matrix �̃�𝑁×𝑛

Node2vec embedding 𝒱𝐸 ← 𝑍(𝒢 )
if 𝑏 == 𝑇 𝑟𝑢𝑒 then

3: clustering centroids 𝐶 ← 𝐾(𝒱𝐸)
Sample 𝑛 pseudo anchor nodes 𝒱𝐸𝑠 from 𝐶

else
6: if 𝑏 == 𝐹𝑎𝑙𝑠𝑒 then

Stochastically sample 𝑛 anchor nodes 𝒱𝐸𝑠 from 𝒱𝐸
end if

9: end if
𝐷 ← 𝑑(𝒱𝐸, 𝒱𝐸𝑠)
Normalize 𝐷

Table 2
Optimized hyperparameter settings for GraphSAGE and GraphPOPE-enhanced GraphSAGE. Hyperpa-
rameters depicted are 𝑛 anchor nodes 𝒱𝑠, batch size 𝐵 and convolutional layers ℓ.

Flickr PubMed

Name 𝑛𝒱𝑠 𝐵 ℓ 𝑛𝒱𝑠 𝐵 ℓ

GraphPOPE-geodesic 256 1550 3 64 800 2
GraphPOPE-node2vec 64 625 3 256 750 3
Baseline - 3550 2 - 2200 2


	1 Introduction
	1.1 Present work

	2 Related Literature
	2.1 Graph Sampling Approaches
	2.2 Information Loss:

	3 Method: GraphPOPE
	3.1 Geodesic Distance Embeddings
	3.2 Biased Anchor Node Sampling
	3.3 Embedding Space Approximation

	4 Experiments
	4.1 Experimental Setup
	4.2 Data

	5 Results
	6 Discussion
	7 Conclusion
	A Appendix

